首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fast-decaying IP in frozen unconsolidated rocks and potentialities for its use in permafrost-related TEM studies
Authors:NO Kozhevnikov  EY Antonov
Institution:Institute of Geophysics of the SB RAS, 3 Prospect Koptyuga, Novosibirsk 630090, Russia
Abstract:We investigate the early time induced polarization (IP) phenomenon in frozen unconsolidated rocks and its association with transient electromagnetic (TEM) signals measured in northern regions. The distinguishing feature of these signals is the distortion of the monotony or sign reversals in the time range from a few tens to a few hundreds of microseconds. In simulating TEM data, the IP effects in frozen ground were attributed to the dielectric relaxation phenomenon rather than to the frequency‐dependent conductivity. This enabled us to use laboratory experimental data available in the literature on dielectric spectroscopy of frozen rocks. In our studies we focused on simulating the transient response of a coincident‐loop configuration in three simple models: (i) a homogeneous frozen earth (half‐space); (ii) a two‐layered earth with the upper layer frozen; (iii) a two‐layered earth with the upper layer unfrozen. The conductivities of both frozen and unfrozen ground were assumed to exhibit no frequency dispersion, whereas the dielectric permittivity of frozen ground was assumed to be described by the Debye model. To simplify the presentation and the comparison analysis of the synthetic data, the TEM response of a frozen polarizable earth was normalized to that of a non‐polarizable earth having the same structure and resistivities as the polarizable earth. The effect of the dielectric relaxation on a TEM signal is marked by a clearly defined minimum. Its time coordinate tmin is approximately three times larger than the dielectric relaxation time constant τ. This suggests the use of tmin for direct estimation of τ, which, in turn, is closely associated with the temperature of frozen unconsolidated rock. The ordinate of the minimum is directly proportional to the static dielectric permittivity of frozen earth. Increasing the resistivity of a frozen earth and/or decreasing the loop size results in a progressively stronger effect of the dielectric relaxation on the TEM signal. In the case of unfrozen earth, seasonal freezing is not likely to have an appreciable effect on the TEM signal. However, for the frozen earth, seasonal thawing of a near‐surface layer may result in a noticeable attenuation of the TEM signal features associated with dielectric relaxation in a frozen half‐space. Forward calculations show that the dielectric relaxation of frozen unconsolidated rocks may significantly affect the transient response of a horizontal loop laid on the ground. This conclusion is in agreement with a practical example of inversion of the TEM data measured over the permafrost.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号