首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction of cataclasis and pressure solution in a low-temperature carbonate shear zone
Authors:Jafar Hadizadeh
Institution:(1) Department of Geography and Geosciences, University of Louisville, 40292 Louisville, Kentucky, U.S.A.
Abstract:The mineralogical and elemental variations across the main shear zone of the Saltville thrust at Sharp Gap in Knoxville, Tennessee, U.S.A., were studied in a suite of deformed and undefromed carbonate rock samples using X-ray diffraction and electron microprobe methods. An examination of the samples for deformation effects at mesoscopic scale and under the optical microscope reveals familiar cataclastic deformation features including foliated cataclasites and microbreccias occurring in a well-defined, 1–2 m wide zone of intense deformation, plus evidence of hydrofracturing and extensive syndeformational pressure solution. There exists a clear correlation between the observed cataclastic deformation and mineral and elemental distribution which we interpret to result from a deformation-induced dolomite to calcite transformation in the shear zone. The transformation has resulted in removal of Mg from the shear zone, selective deposition of calcite as an intergranular cement in cataclasite/microbreccia units and a relative increase in the concentration of detrital quartz and feldspars.The compositional difference between the shear zone and wall rocks is explained in connection with cataclastic deformation features in terms of a model in which a dual pressure-solution/cataclastic flow mechanism leads to a gradual cementation-hardening of segments of the shear zone. Instabilities could occur via permeability reduction and increased pore pressure within these segments. Hydrofracturing of the hardened segments along with high strain rate reordering of the shear zone materials reset the ruptured zone back to the dual deformation mechanism regime. As a long-term effect, the compositional transformation of the shear zone is expected to prolong periods of creep and cause smaller coseismic stress drops since under the imposed conditions calcite is more ductile and soluble than dolomite.
Keywords:Cataclasis  pressure solution  geochemistry of brittle shear zones
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号