首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of the importance of moderate spatial resolution cloud climatology data in solar radiation modeling
Authors:Alexandria Gartside McCombs  May Yuan
Institution:1. Department of Geography, University of South Carolina, Columbia, SC, USA;2. Geospatial Information Sciences, School of Economic, Political and Policy Sciences, University of Texas at Dallas, Richardson, TX, USA
Abstract:Improving solar radiation models is critical for supporting the increase in solar energy usage and modeling ecosystem dynamics. However, coarse spatial resolutions of solar radiation models overlook the impacts resulting from spatial variability of clouds at meso- and micro-scales. To address this problem, Moderate Resolution Imaging Spectroradiometer (MODIS) cloud climatology developed by the National Severe Storms Laboratory was used to relate cloudiness to surface solar radiation observations. We developed a linear regression model between the surface solar radiation and MODIS cloud climatology and used the model to estimate average radiation across Oklahoma. Furthermore, the study compared the average error and coefficient of determination to measured ground radiation. Error analysis of the regression model showed that the differences between observed radiation and estimated radiation were spatially autocorrelated for the Aqua MODIS satellite scan. This suggests cloudiness alone is not sufficient to predict surface solar radiation. This study found that simple cloud datasets alone can account for approximately 50% of the variation in observed solar radiation at 250-m spatial resolution, but additional datasets such as optical depth, elevation, and slope are needed to accurately explain spatial distributions of incoming shortwave radiation.
Keywords:Solar radiation modeling  remote sensing  cloud climatology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号