首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three types of pyroclastic currents and their deposits: examples from the Vulsini Volcanoes, Italy
Authors:Danilo M Palladino  Silvia Simei
Abstract:This paper deals with ground-hugging, gas–pyroclast currents from explosive volcanic eruptions and their deposits. Key field observations and laboratory determinations are proposed to relate specific deposit types with flow regimes and particle concentration in the transport and depositional systems. Three relevant flow scenarios and corresponding deposit types have been recognized from a survey of pyroclastic successions of the Vulsini Volcanic District (central Italy): (1) dilute, turbulent, pyroclastic currents producing normally or multiply graded beds by direct suspension sedimentation; (2) concentrated bedload regions beneath suspension currents, depositing inversely graded beds by traction carpet sedimentation; (3) self-sustained, high particle concentration, laminar, mass flows developing massive, poorly sorted bodies, with opposite grading of coarse lithic and pumice clasts, overlying fine-grained, inversely graded, basal layers. Main distinguishing criteria include the occurrence and pattern of clast grading, clast–thickness relationships, grain size, ash matrix componentry and pyroclast size–density relationships. Downcurrent and temporal transitions among identified flow scenarios are likely to occur for changing energy conditions and gas–pyroclast ratio both on regional and local scales. The nature and efficiency of magma fragmentation, volatile content, conduit geometry (which determine the characteristics of the erupted mixture and possible lateral blast component at the vent), and the angle of incidence of the column collapse, are suggested as the main factors controlling the generation of one type over the other at flow inception. Dilute, fine-grained, overpressured eruption clouds are thought to favor the formation of low particle concentration turbulent currents. Column collapse over slightly inclined volcano slopes, causing a high degree of compression of the collapsing mixture and of gas expulsion, would favor the generation of high particle concentration pyroclastic currents.
Keywords:pyroclastic deposit  pyroclastic current  traction carpet
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号