首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Upwelling into the thermocline of the Pacific Ocean
Authors:Doron Nof  Stephen Van Gorder
Institution:a Department of Oceanography 4320, Florida State University, Tallahassee, FL 32306-4320, USA;b Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, FL 32306-4360, USA
Abstract:The established “island rule” and the recently introduced “separation formula” are combined to yield an analytical expression for the total upwelling into the thermocline in the Pacific. The combination of the two is achieved with the use of a hybrid model containing a stratified upper layer, a thick (slowly moving) homogenous intermediate layer and an inert lower layer. Both the upper and the intermediate layers are subject to diabatic cooling and heating (which need not be specified) and there is an exchange of mass between the two active layers. An attempt is made to examine the above analytical (hybrid) model numerically. Ideally, this should be done with a complete two-and-a-half layer model (with upwelling and downwelling), but such a model is much too complex for process-oriented studies (due to the required parameterization of vertical mixing). Consequently, we focus our attention on verifying that the separation formula and the island rule are consistent with each other in a much simpler, layer-and-a-half model (without upwelling). We first verified that the new “separation formula” provides a reasonable estimate of the wind-induced transport in an island-free basin. We then compare the wind-induced transport predicted by the separation formula and the island rule in an idealized basin containing an island. We show that in these idealized situations the two methods give results that are consistent with each other and the numerics. We then turned to an application of the (hybrid) two-and-a-half layer model to the Pacific where, in contrast to the idealized layer-and-a-half models (where the two methods address the same water mass), the two methods address two different water masses. While the separation formula addresses only thermocline water (σθ<26.20), the island rule addresses all the water down to 27.5σθ (i.e., both the upper and intermediate layer). This is why the application of the two methods to the Pacific gives two different results — an application of the formula gives zero warm water transport whereas an application of the island rule gives 16 Sv. Namely, the difference between the amount predicted by the island rule (16 Sv) and the amount predicted by the separation formula (zero) enters the Pacific as intermediate water and is then somehow upwelled into the thermocline. The upwelling should take place north of the southern western boundary currents separation (40°S).
Keywords:Island rule  Separation formula  Upwelling  Thermocline
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号