首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissolution Rates of Upper Mantle Minerals in an Alkali Basalt Melt at High Pressure: An Experimental Study and Implications for Ultramafic Xenolith Survival
Authors:BREARLEY  MARK; SCARFE  CHRISTOPHER M
Institution:Experimental Petrology Laboratory, Department of Geology, University of Alberta, Edmonton Alberta, Canada T6G 2E3
Abstract:The dissolution rates of the major upper mantle minerals olivine,orthopyroxene, clinopyroxene, spinel, and garnet have been determinedin an alkali basalt melt at superliquidus temperatures and 5,12, and 30 kb. At low pressure where olivine is the liquidusphase of the basalt, olivine has a slower dissolution rate thanclinopyroxene; however, at higher pressure where clinopyroxeneis the liquidus phase, clinopyroxene has a slower dissolutionrate than olivine. The relative rates of dissolution of olivineand clinopyroxene at each pressure are, therefore, governedby their relative stabilities in the melt and hence by the structureof the melt. As the degree of superheating above the liquidusincreases at each pressure, the dissolution rates of olivineand clinopyroxene converge, suggesting that the melt undergoestemperature-induced structural changes. Orthopyroxene has a dissolution rate similar to olivine at highpressure and similar to clinopyroxene at low pressure. Spinelhas the slowest dissolution rate at each pressure. Garnet dissolvesvery rapidly at 12 kb and at a comparable rate of olivine at30 kb. The dissolution rates determined in the experiments varyfrom 9.21 ? 10–9cm s–1 for spinel at 5 kbar and1250?C to 3.83 ? 10–5cm s–1 for garnet at 30 kband 1500?C. Textures produced during the dissolution experiments are relatedto mineral stability in the melt at each pressure and are independentof the degree of superheating. The mineral phases that are stableon or near the liquidus exhibit no reaction; whereas complexreaction textures and crystallization characterize dissolutionof minerals that are relatively unstable in the melt. Concentration profiles in the melt adjacent to the same crystalfor different experimental durations are identical, indicatingthat dissolution is time-independent and a steady-state process.However, cation diffusion coefficients calculated for single-componentoxides in the melt reveal that dissolution may not be completelycontrolled by diffusion of cations away from the crystal/meltinterface. The apparent diffusivities positively correlate withthe dissolution rate, which suggests that the stability of themineral is an important factor to consider when deriving diffusioncoefficients from these experiments. Other factors that maybe involved are multi-component effects and the nature of thediffusing species in the melt. A simple model has been constructed that predicts the survivalof ultramafic xenoliths in alkali basalt magmas as a functionof xenolith radius, magma ascent time and superheating. Theresults of the model suggest that the relative proportions ofperidotite and pyroxenite xenoliths brought to the surface inalkali basalts are generally representative of their proportionsas constituents of the upper mantle. Further experiments usingdifferent melt compositions are required to extend the model.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号