首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydraulic Gradient Comparison Method to Estimate Aquifer Hydraulic Parameters Under Steady-State Conditions
Authors:Xiaoniu Guo  Chuan-Mian Zhang
Institution:Foster Wheeler Environmental Inc., 143 Union Blvd., Lakewood, CO 80228;(303) 980-3605;;URS Greiner Woodward-Clyde, 4582 South Ulster St., Denver, CO 80237;(303) 740-3862;
Abstract:The hydraulic gradient comparison method is an inverse method for estimation of aquifer hydraulic conductivity (or trans-missivity) and boundary conductance for a ground water flow model under steady-state conditions. This method, following formal optimization techniques, defines its objective function to minimize differences between interpreted (observed) and simulated hydraulic gradients, which results in minimization of differences between observed and simulated hydraulic heads. The key features of this method are that (1) the derived optimality conditions have an explicit form with a clear hydrology concept that is con-sistent with Darcy's law, and (2) the derived optimality conditions are spatially independent as they are a function of only local hydraulic conductivity and local hydraulic gradient. This second feature allows a multidimensional optimization problem to be solved by many one-dimensional optimization procedures simultaneously, which results in a substantial reduction in computation time. The results of the numerical performance testing on a heterogeneous hypothetical case confirm that minimizing gradient residuals in the entire model domain leads to minimizing head residuals. Application of the method in real-world projects requires rigorous conceptual model development, use of a global calibration target, and an iterative calibration proess. The conceptual model development includes interpretation of a potentiometric surface and estimation of other hydrologic parameters. This method has been applied to a wide range of real-world modeling projects, including the Rocky Mountain Arsenal and Rocky Flats sites in Colorado, which demonstrates that the method is efficient and practical.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号