首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time-dependent simulations of steady C-type shocks
Authors:S Van Loo  I Ashmore  P Caselli  S A E G Falle  T W Hartquist
Institution:School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT;Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT
Abstract:Using a time-dependent multifluid, magnetohydrodynamic code, we calculated the structure of steady perpendicular and oblique C-type shocks in dusty plasmas. We included relevant processes to describe mass transfer between the different fluids, radiative cooling by emission lines and grain charging, and studied the effect of single- and multiple-sized grains on the shock structure. Our models are the first of oblique fast-mode molecular shocks in which such a rigorous treatment of the dust grain dynamics has been combined with a self-consistent calculation of the thermal and ionization structures including appropriate microphysics. At low densities, the grains do not play any significant rôle in the shock dynamics. At high densities, the ionization fraction is sufficiently low that dust grains are important charge and current carriers and, thus, determine the shock structure. We find that the magnetic field in the shock front has a significant rotation out of the initial upstream plane. This is most pronounced for single-sized grains and small angles of the shock normal with the magnetic field. Our results are similar to previous studies of steady C-type shocks showing that our method is efficient, rigorous and robust. Unlike the method employed in the previous most detailed treatment of dust in steady oblique fast-mode shocks, ours allow a reliable calculation even when chemical or other conditions deviate from local statistical equilibrium. We are also able to model transient phenomena.
Keywords:MHD  shock waves  ISM: dust  extinction  ISM: jets and outflows
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号