首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of gas and aqueous fluid in low-permeability argillaceous rocks during uplift and exhumation of the central Swiss Alps
Institution:1. National Centre for Groundwater Research and Training (NCGRT), School of the Environment, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia;2. Innovative Groundwater Solutions (IGS), Middleton, SA 5213, Australia;1. DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France;2. PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 11 rue Pierre et Marie Curie, F-75005, Paris, France;1. China University of Petroleum-Beijing at Karamay, 834000, Xinjiang, China;2. State Key Laboratory of Petroleum Resources and Prospecting, College of Petroleum Engineering, China University of Petroleum, 102249, Beijing, China;3. Sinopec Research Institute of Petroleum Engineering, 100101, Beijing, China;4. Northeast Petroleum University, 163318, Daqing, China
Abstract:Fluid chemistry and the hydraulic regime in a marl formation of the Swiss Alps were studied by a number of techniques. Fluid inclusions record the conditions of maximum burial and regional low-temperature metamorphism, whereas fluid samples and hydraulic tests derived from deep boreholes reflect present-day, near-surface conditions. The characterization of the different types of fluids places constraints on the geochemical and hydraulic evolution of low-permeability argillaceous rocks during uplift and exhumation.Fluid inclusions were studied by microthermometry and sampled directly by decrepitation techniques. They contain a two-phase system consisting of an aqueous fluid and a coexisting CH4-rich gas (T=190–250°C, Plith≈2500 bar). Bulk and isotopic compositions of aqueous fluid inclusions are consistent with a mixture of connate seawater and water derived from the dehydration of clay minerals. Methane was generated in situ by thermal cracking of kerogen. Textural evidence and stable isotopic signatures of carbonates in veins and in the rock matrix indicate local buffering of fluid compositions and very low water/rock ratios. Free fluids residing in the present-day fracture and matrix porosity consist of CH4-saturated Na–Cl groundwater with minute amounts of free CH4 gas which occurs in druses. Their chemical and isotopic compositions are very similar to those of the fluid inclusions, suggesting a common origin. Post-metamorphic admixtures of externally derived waters cannot be identified, and it is suggested that present-day Na–Cl groundwaters that occur in the central parts of the marl have resided in the formation since the time of metamorphism some 20 Ma b.p. The only major change in the fluid composition has been the outgassing of CH4 from the formation, most probably by diffusion.The hydraulic regime during metamorphism was characterized by localized fluid underpressures in open veins because widely scattered, sub-hydrostatic pressures were often identified in fluid inclusions. The central part of the argillaceous rock body, approximately coinciding with the region where Na–Cl groundwaters occur, has sub-hydrostatic pressures today, as indicated by hydraulic tests in deep boreholes.Both the closed-system behavior derived from the chemical and isotopic characteristics of the fluids and the (recurrent or continuous) existence of hydraulic underpressures suggest very low permeabilities of argillaceous rocks during metamorphism and throughout subsequent uplift and exhumation. All fluids present in the central parts of the formation are either connate or produced in situ. Even though major events of brittle faulting and unloading due to uplift occurred since the peak of metamorphism, fluid flow through the formation has been negligible.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号