首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Search for circum‐planetary material and orbital period variations of short‐period Kepler exoplanet candidates
Authors:Z Garai  G Zhou  J Budaj  RF Stellingwerf
Abstract:A unique short‐period (P = 0.65356(1) d) Mercury‐size Kepler exoplanet candidate KIC012557548b has been discovered recently by Rappaport et al. (2012). This object is a transiting disintegrating exoplanet with a circum‐planetary material–comet‐like tail. Close‐in exoplanets, like KIC012557548b, are subjected to the greatest planet‐star interactions. This interaction may have various forms. In certain cases it may cause formation of the comet‐like tail. Strong interaction with the host star, and/or presence of an additional planet may lead to variations in the orbital period of the planet. Our main aim is to search for comet‐like tails similar to KIC012557548b and for long‐term orbital period variations. We are curious about frequency of comet‐like tail formation among short‐period Kepler exoplanet candidates. We concentrate on a sample of 20 close‐in candidates with a period similar to KIC012557548b from the Kepler mission. We first improved the preliminary orbital periods and obtained the transit light curves. Subsequently we searched for the signatures of a circum‐planetary material in these light curves. For this purpose the final transit light curve of each planet was fitted with a theoretical light curve, and the residuals were examined for abnormalities. We then searched for possible long‐term changes of the orbital periods using the method of phase dispersion minimization. In 8 cases out of 20 we found some interesting peculiarities, but none of the exoplanet candidates showed signs of a comet‐like tail. It seems that the frequency of comet‐like tail formation among short‐period Kepler exoplanet candidates is very low. We searched for comet‐like tails based on the period criterion. Based on our results we can conclude that the short‐period criterion is not enough to cause comet‐like tail formation. This result is in agreement with the theory of the thermal wind and planet evaporation (Perez‐Becker & Chiang 2013). We also found 3 cases of candidates which showed some changes of the orbital period. Based on our results we can see that orbital period changes are not caused by comet‐like tail disintegration processes, but rather by possible massive outer companions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:planetary systems  techniques: photometric
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号