首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Remote detection of fluid-related diagenetic mineralogical variations in the Wingate Sandstone at different spatial and spectral resolutions
Institution:1. CSIR - National Institute of Oceanography, Dona Paula, Goa 403 004, India;2. School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa 403 206, India;3. National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama, Goa 403 804, India
Abstract:Well-exposed eolian units of the Jurassic system on the Colorado Plateau including the Wingate Sandstone, show prominent color variations throughout southeastern Utah due to diagenetic changes that include precipitation and/or removal of iron oxide, clay, and carbonate cement. Spatially variable characteristic diagenetic changes suggest fluid-rock interactions through the sandstone. Distinctive spectral signatures of diagenetic minerals can be used to map diagenetic mineral variability and possibly fluid-flow pathways. The main objective of this work was to identify characteristic diagenetic minerals, and map their spatial variability from regional to outcrop scale in Wingate Sandstone exposures of Lisbon Valley, Utah. Laboratory reflectance spectroscopy analysis of the samples facilitated identification of diagnostic spectral characteristics of the common diagenetic minerals and their relative abundances between altered and unaltered Wingate Sandstone. Comparison of reflectance spectroscopy with satellite, airborne, and ground-based imaging spectroscopy data provided a method for mapping and evaluating spatial variations of diagenetic minerals. The Feature-oriented Principal Component Selection method was used on Advanced Spaceborne Thermal Emission and Reflection Radiometer data so as to map common mineral groups throughout the broader Wingate Sandstone exposure in the area. The Minimum Noise Fraction and Spectral Angle Mapper methods were applied on airborne HyMap and ground-based hyperspectral imaging data to identify and map mineralogical changes. The satellite and airborne data showed that out of 25.55 km2 total exposure of Wingate Sandstone in Lisbon Valley, unaltered sandstone cover 12.55 km2, and altered sandstone cover 8.90 km2 in the northwest flank and 5.09 km2 in the southern flank of the anticline. The ground-based hyperspectral data demonstrated the ability to identify and map mineral assemblages with two-dimensional lateral continuity on near-vertical rock faces. The results showed that 39.71% of the scanned outcrop is bleached and 20.60% is unbleached while 6.33% remain unclassified, and 33.36% is masked-out as vegetation. The bleached and unbleached areas are alternating throughout the vertical face of the outcrop. The relative hematite abundance observed in the unbleached areas are somewhat symmetrical. This indicates fairly similar reaction intensities along the upper and lower reaction fronts observed in the vertical section. The distribution geometry and relative abundances of diagenetic minerals not only suggest multiple paths of fluid-flow in Wingate Sandstone but also provides some insight about relative direction of past fluid-flow.
Keywords:Rock alteration  Diagenetic minerals  Fluid-flow  Ground-based hyperspectral imaging  Wingate Sandstone
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号