首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rheological constraints on martian landslides
Authors:Keith P Harrison  Robert E Grimm
Institution:a Laboratory for Atmospheric and Space Physics (LASP), University of Colorado, Campus Box 392, Boulder, CO 80309-0392, USA
b LASP and Blackhawk Geoservices, Inc., 301 B Commercial Road, Golden, CO 80401, USA
Abstract:We use a dynamic finite-difference model to simulate martian landslides in the Valles Marineris canyon system and Olympus Mons aureole using three different modal rheologies: frictional, Bingham, and power law. The frictional and Bingham modes are applied individually. Fluidized rheology is treated as a combination of frictional and power-law modes; general fluidization can include pore pressure contributions, whereas acoustic fluidization does not. We find that general fluidization most often produces slides that best match landslide geometry in the Valles Marineris. This implies that some amount of supporting liquid or gas was present in the material during failure. The profile of the Olympus Mons aureole is not well matched by any landslide model, suggesting an alternative genesis. In contrast, acoustic fluidization produces the best match for a lunar slide, a result anticipated for dry crust with no overlying atmosphere. The presence of pressurized fluid during Valles Marineris landsliding may be due to liquid water beneath a thin cryosphere (<1-2 km) or flash sublimation of CO2.
Keywords:Mars  surface  Surfaces  planets  Terrestrial planets
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号