首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cyclic hysteretic flow in porous medium column: model, experiment, and simulations
Authors:F Stauffer and W Kinzelbach
Institution:

Institute of Hydromechanics and Water Resources Management, ETH Zurich, CH-8093 Zurich, Switzerland

Abstract:A periodic vertical movement of the groundwater table results in a subsequent cyclic response of the water content and pressure profiles in the vadose zone. The sequence of periodic wetting and drying processes can be affected by hysteresis effects in this zone. A one-dimensional saturated/unsaturated flow model based on Richards’ equation and the Mualem (Soil Sci. 137 (1984) 283) hysteresis model is formulated which can take into account multi-cycle hysteresis effects in the relation between capillary pressure and water content. The numerical integration of the unsaturated flow equation is based on a Galerkin-type finite element method. The flow domain is discretised by finite elements with linear shape functions. Simulations start with static water content and pressure profiles, which correspond to either a boundary drying or wetting retention curve. To facilitate the numerical solution of the hysteretic case an implicit non-iterative procedure was chosen for the solution of the nonlinear differential equation. Laboratory experiments were performed with a vertical sand column by imposing a high frequency periodic pressure head at the lower end of the column. The total water volume in the column, and the periodic water content profile averaged over time were measured. The boundary drying and wetting curves of the relation between water content and capillary pressure were determined by independent experiments. The simulations of the experimental conditions show a clear effect of the hysteresis phenomenon on the water content profile. The simulations with hysteresis agree well with the measurements. Computed dimensionless water content profiles are presented for different oscillation frequencies with and without consideration of hysteresis.
Keywords:Unsaturated flow  Soil water retention  Hysteresis  Periodic fluctuations  Numerical model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号