首页 | 本学科首页   官方微博 | 高级检索  
     检索      


First Late Ordovician Paleomagnetic Pole for the Cuyania (Precordillera) Terrane of Western Argentina: a Microcontinent or a Laurentian Plateau
Authors:Augusto E Rapalini  Carlos A Cingolani
Institution:

aINGEODAV, Depto. Cs. Geológicas, Fac. Cs. Exactas y Naturales, Universidad de Buenos Aires-CONICET, Pabellón 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina

bCIG - Depto. Geología, Univ. Nac. La Plata, calle 1 n. 644, 1900-La Plata

Abstract:Time and tectonic processes involved in docking of the Argentine Precordillera (Cuyania terrane) against SW Gondwana has been a matter of much debate. A paleomagnetic study on the Early Caradoc Pavón Formation, exposed in the San Rafael block, province of Mendoza, Argentina, is presented. After detailed thermal and alternating field demagnetizations two geologically significant magnetic components were defined. A widespread post-tectonic component (A) is present in most sites of the Pavón Formation, with dual polarities, and is coincident with the characteristic remanence isolated from a Permo-Triassic rhyolitic dome intruding the sediments. Its pole position (83.7°S, 271.0°E, dp = 6.8°, dm = 9.0° N = 11 sites) falls on the Late Permian-Early Triassic South American reference poles suggesting that this component was acquired during the Choiyoi magmatic phase. A second component (B) also shows dual polarities and a positive fold test suggesting a primary origin. Unblocking temperatures and rock magnetic experiments indicate that B is carried either by hematite or magnetite at different sites. Anisotropy of magnetic susceptibility results suggest a depositional fabric and no remanence distortion due to deformation or compaction. A paleomagnetic pole computed from this remanence (PV) falls on 3.6°N, 346.4°E (dp = 2.9°, dm = 4.6° n = 22 samples). It indicates a paleolatitude around 26°S for deposition of Pavón sediments and constrains the paleogeographic evolution of Cuyania during the Ordovician, which was still at subtropical latitudes by the Early Caradoc. PV is consistent with the Laurentian Late Ordovician reference pole if Cuyania remains attached to SE Laurentia for the Early Caradoc, while it shows a significant cw rotation with no paleolatitude anomaly respect to the Gondwana reference pole when kept in its present position in SW South America. These comparisons are interpreted in three possible alternatives for the paleogeographic and tectonic setting of Cuyania in the Late Ordovician.
Keywords:Paleomagnetism  Precordillera  Laurentia  Gondwana  Ordovician
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号