首页 | 本学科首页   官方微博 | 高级检索  
     检索      


P-T-X effects on equilibrium carbonate-H2O-CO2-NaCl dihedral angles: constraints on carbonate permeability and the role of deformation during fluid infiltration
Authors:M B Holness  C M Graham
Institution:(1) Department of Geology and Geophysics, University of Edinburgh, King's Buildings, West Mains Road, EH9 3JW Edinburgh, UK
Abstract:Fluid-solid-solid dihedral angles in the NaCl-H2O-CO2-calcite-dolomite-magnesite system have been determined at pressures ranging from 0.5 to 7 kbar and temperatures from 450°C to 750°C. At 1 kbar and 650°C, both dolomite and magnesite exhibit a dihedral angle minimum for intermediate H2O-CO2 fluids similar to that previously determined by the present authors for calcite, but the depth of the minimum is smaller, being above the critical value of 60° for both dolomite and magnesite for all fluid compositions. Calcite-calcite-brine dihedral angles at 650°C have been determined in the pressure range 1–5 kbar. Angles decrease with increasing salt content of the fluid, tending towards a constant value of about 65° for strong brines at pressures above 2 kbar. There is a general increase of angle with increasing pressure which is most marked for strong brines. A positive correlation of angle with pressure is also observed in calcite-H2O-CO2 fluids, the position of the minimum moving towards higher angles and towards H2O-rich fluids with increasing pressure. The permeability window previously observed by the present authors at 1 kbar and intermediate fluid compositions closes at about 1.5 kbar. The results demonstrate that the permeability of carbonates to grain edge fluid flow is only possible at low pressures and for fluids of restricted H2O-CO2-NaCl compositions. However, geochemical evidence from metamorphic terrains suggests that pervasive infiltration does occur under conditions where impermeability is predicted. From examination of published studies of infiltrated carbonates we conclude that deformation plays a critical role in enhancing carbonate permeability. Possible mechanisms for this include shear-enhanced dilatancy (micro-cracking), fluid inclusion drag by deformation-controlled grain boundary migration, and dynamically maintained transient grain boundary fluid films.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号