首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiphase SPH modeling of free surface flow in porous media with variable porosity
Institution:1. Department of Civil Engineering, Monash University, VIC 3800, Australia;2. Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800, Australia;1. The State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;2. School of Engineering, Physics and Mathematics, University of Dundee, DD1 4HN, United Kingdom
Abstract:This paper presents a numerical model for simulating free surface flow in porous media with spatially varying porosity. The governing equations are based on the mixture theory. The resistance forces between solid and fluid is assumed to be nonlinear. A multiphase SPH approach is presented to solve the governing equations. In the multiphase SPH, water is modeled as a weakly compressible fluid, and solid phase is discretized by fixed solid particles carrying information of porosity. The model is validated by several numerical examples including seepage through specimen, fast flow through rockfill dam and wave interaction with porous structure. Good agreements between numerical results and experimental data are obtained in terms of flow rate and evolution of free surface. Parameter study shows that (1) the nonlinear resistance law provides more accurate results; (2) particle size and porosity have significant influence on the porous flow.
Keywords:Free surface flow  Porous media  Mixture theory  Resistance law  Delta-SPH
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号