首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inferring the depth extent of the horizontal supergranular flow
Authors:Laurence J November
Institution:(1) National Solar Observatory, Sacramento Peak, National Optical Astronomy Observatories, 88349 Sunspot, NM, USA
Abstract:The 2D horizontal velocity field determined from local correlation tracking of granulation and its divergence have remarkably different appearances. The 2D horizontal velocity shows the classical 32 Mm supergranular cellular outflow bounded by the chromospheric network, whereas the divergence is dominated by distinct long-lived sources and sinks of about 7 Mm size. The 2D horizontal velocity shows no obvious evidence for ap7 Mm cells, and the divergence exhibits little power with the ap32 Mm scale. However, by mass continuity for a steady 3D flow in a stratified atmosphere, the divergence of the 2D horizontal component is equal to the vertical velocity divided by a height scale. Thus the 3D steady solar flow field at the bottom of the photosphere has a vertical component consisting primarily of ap7 Mm sources and sinks, which define the 2D cellular-like ap32 Mm continuous horizontal outflows.Simultaneous Doppler vertical velocity measurements verify the mass-continuity relation, and give a height scale equal to the density scale height in the photosphere within observational error. The observational result is consistent with our theoretical expectation. Any height scale other than the density scale height would indicate a vertical velocity thate-folds on a scale comparable to or smaller than the density scale height, which we argue is unphysical near the top of the convection zone. The continuity relation indicates that vortex-free steady horizontal velocities seen at the solar surface, i.e., the horizontal supergranular flow, must diminish with depth due to the increasing density scale height. We estimate that the horizontal supergranular flow cannot extend much more than onee-fold increase in the density scale height below the visible solar surface, about 2.4 Mm. Therefore the convection below the solar surface should be characterized by the scale of the principal steady vertical velocity component, i.e., by vertical plumes having a dimension of ap7 Mm - what we have called lsquomesogranulationrsquo - rather than closed ap32 Mm cells as is widely believed.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with National Science Foundation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号