首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cryptotephra detection using high-resolution trace-element analysis of Holocene marine sediments, southwest Japan
Authors:Chungwan Lim  Kazuhiro Toyoda
Institution:a Graduate School of Environmental Science (GSES), Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
b Institute of Geology and Geoinformation, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8567, Japan
c Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan
Abstract:Detection techniques for invisible tephra, known as cryptotephra, have been exploited to construct precise and high-resolution correlations for a broad range of sedimentary sequences. We demonstrate that continuous trace-element profiles are an effective means for detecting probable positions of distal cryptotephra in Holocene hemipelagic sediments. Instrumental neutron activation analyses were performed on specimens of bulk sediments from five piston and gravity cores (water depths: 300-1500 m) taken from the southern Japan/East Sea. The down-core variations in the Ta/Sc ratio identify the positions of one to three alkaline cryptotephra in four of these cores. The Cr/Sc profiles show the position of one rhyolitic cryptotephra in three of the cores. The existence of tephra-derived components (glass ± crystals) was confirmed by microscopic observation, SEM-EPMA analysis and refractive index measurement on grains extracted from these layers. Based on microscopic observation and the stratigraphic correlations between cores, we identified eruption ages of the cryptotephras at 6.3, 7.5 and 9.3 14C kyr BP, and two source volcanoes around 800 and 400 km from the study area.The tephra layers visible to the naked eye contained volcanic grains coarser than 200 μm, and the alkaline and rhyolitic tephra component comprised >20% and >33% of the sediment on weight basis, respectively. In contrast, the range of particle sizes of the cryptotephras detected in this study is finer than 125 μm, and almost all of the glass shards were finer than 40 μm. The alkaline and rhyolitic cryptotephras made up only 2-17% and 22-24%, respectively, of the sediment on weigh basis. The high sensitivity of this method stems from the significant difference in trace-element contents between the tephras and enclosing hemipelagic sediments in the core. Alkaline U-Oki tephra was enriched in Ta by one order of magnitude over that of the sediment, and depleted in Sc by one order. The rhyolitic tephra, K-Ah, was depleted by about one order in Cr relative to that of enclosing the sediment. The differences in chemical composition between within-plate alkaline tephras and hemipelagic sediments are usually so large that trace-element geochemical method is likely to be useful for alkaline cryptotephra detection in other areas with similar tectonic characteristics.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号