首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The LaPaz Icefield 04840 meteorite: Mineralogy, metamorphism, and origin of an amphibole- and biotite-bearing R chondrite
Authors:MC McCanta  AH Treiman  CMO’D Alexander  EJ Essene
Institution:a Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058, USA
b Department of Astronomy, Mount Holyoke College, South Hadley, MA 01075, USA
c Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015-1305, USA
d Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC, 20015-1305, USA
e Department of Geological Sciences, University of Michigan, 2534 CC Little Building, 1100 North University Avenue, Ann Arbor, MI 48109-1005, USA
Abstract:The R chondrite meteorite LaPaz Icefield (LAP) 04840 is unique among metamorphosed, non-carbonaceous chondrites in containing abundant OH-bearing silicate minerals: ∼13% ferri-magnesiohornblende and ∼0.4% phlogopite by volume. Other minerals include olivine (Fo62), orthopyroxene (En69Fs30Wo1), albite (An8Ab90Or2), magnetite, pyrrhotite, pentlandite, and apatite. Ferromagnesian minerals are rich in Fe3+, as determined by Mössbauer spectrometry and electron microprobe chemical analyses. Fe3+/Fetot values are olivine ?5%, amphibole 80%, phlogopite 65%, and magnetite 42%. Mineral compositions are nearly constant across grains and the section, except for a small variability in amphibole compositions reflecting the edenite exchange couple (ANa + IVAl ↔ A□ + Si). These mineral compositions, the absence of Fe-Ni metal, and the oxygen isotope data support its classification as an R (Rumuruti) chondrite. LAP 04840 is classified as petrologic grade 5, based on the chemical homogeneity of its minerals, and the presence of distinctly marked chondrules and chondrule fragments in a fine-grained crystalline matrix. The mineral assemblage of LAP 04840 allows calculation of physical and chemical conditions at the peak of its metamorphism: T = 670 ± 60 °C from a amphibole-plagioclase thermometer; PH2O between 250 and 500 bars as constrained by the assemblage phlogopite + orthopyroxene + olivine + feldspar and the absence of diopside; PCO2 unconstrained; fO2 at QFM + 0.5 log units; View the MathML source. The hydrogen in LAP 04840 is very heavy, an average δD value of +3660 ± 75‰ in the magnesiohornblende. Only a few known sources of hydrogen have such high δD and are suitable sources for LAP 04840: ordinary chondrite phyllosilicates (as in the Semarkona chondrite), and insoluble organic matter (IOM) in ordinary chondrites and CR chondrites. Hydrogen from the IOM could have been released by oxidation, and then reacted with an anhydrous R chondrite (at high temperature), but it is not clear whether this scenario is correct.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号