首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets
Authors:Mikael Beuthe
Institution:Royal Observatory of Belgium, Brussels, Belgium. E-mail:
Abstract:Planetary topography can either be modelled as a load supported by the lithosphere, or as a dynamic effect due to lithospheric flexure caused by mantle convection. In both cases the response of the lithosphere to external forces can be calculated with the theory of thin elastic plates or shells. On one-plate planets the spherical geometry of the lithospheric shell plays an important role in the flexure mechanism. So far the equations governing the deformations and stresses of a spherical shell have only been derived under the assumption of a shell of constant thickness. However, local studies of gravity and topography data suggest large variations in the thickness of the lithosphere. In this paper, we obtain the scalar flexure equations governing the deformations of a thin spherical shell with variable thickness or variable Young's modulus. The resulting equations can be solved in succession, except for a system of two simultaneous equations, the solutions of which are the transverse deflection and an associated stress function. In order to include bottom loading generated by mantle convection, we extend the method of stress functions to include loads with a toroidal tangential component. We further show that toroidal tangential displacement always occurs if the shell thickness varies, even in the absence of toroidal loads. We finally prove that the degree-one harmonic components of the transverse deflection and of the toroidal tangential displacement are independent of the elastic properties of the shell and are associated with translational and rotational freedom. While being constrained by the static assumption, degree-one loads can deform the shell and generate stresses. The flexure equations for a shell of variable thickness are useful not only for the prediction of the gravity signal in local admittance studies, but also for the construction of stress maps in tectonic analysis.
Keywords:Elasticity and anelasticity  Planetary tectonics  Lithospheric flexure  Mechanics  theory  and modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号