首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of bed perturbation and velocity asymmetry on ripple initiation: wave-flume experiments
Authors:Tomohiro Sekiguchi  Tsuguo Sunamura
Institution:a Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan;b Department of Earth and Space Sciences, Osaka University, Osaka 560-0043, Japan
Abstract:Laboratory experiments using a wave flume were designed to examine the threshold condition for ripple formation under asymmetrical oscillatory flows on an artificially roughened bed. Three types of sand beds were prepared in the experiments: they were flat, notched, and notch-mounded beds with bed roughness increasing in this order. The beds were constructed with three kinds of well-sorted sand with similar density, but different diameters. Data analyses were made using the two dimensionless parameters: the mobility number, M, a simplified form of the Shields number, and the Ursell number, U, a surrogate for asymmetry of flow field. The result confirmed that the threshold for ripple initiation is decreased with increasing bed perturbation and that as the bed perturbation increases, the dependency of this threshold on the flow asymmetry becomes less and finally null for the notch-mounded bed. This relationship is quantified by the following equations: M=17−14.5e−0.03U on the flat bed, M=5.0−2.5e−0.1U for the notched bed, and M=2.5 for the notch-mounded bed. A comparison between the previous field data and the present laboratory findings indicates that the threshold in the notch-mounded bed experiment, M=2.5, seems to provide a critical condition for rippling in the natural environment.
Keywords:Bed disturbance  Asymmetrical oscillatory flow  Wave ripple initiation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号