首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimentally verified model of the seepage progress due to dissolution of soluble particles in foundations subject to intergranular flow
Authors:C M Baena  M Á Toledo
Institution:1. Jesús Granell Ingenieros Consultores, SL, Madrid, Spain
2. Universidad Politécnica de Madrid, Madrid, Spain
Abstract:The foundations of dams containing soluble material, typically gypsum and limestone, undergo a dissolving process as a consequence of reservoir seepage. In due course, such dissolution of soluble material increases the volume of holes through which water may flow, in turn involving an increase in flow rate through the dam foundation. To adapt dam design to the particular conditions of these foundations, especially in foundations containing gypsum, with the main aims of delaying the dissolution process and avoiding damage or loss of functionality during dam lifespan, a procedure that models the dissolution process coupled with seepage phenomena is necessary. The objective of this paper is to provide this procedure and test it under experimental conditions. This entails coupling a conventional code for calculation of seepage networks, by means of the finite-element method, with a code developed by the authors to calculate the solution front advance (the zone where the dissolution is taking place). The procedure is verified by performing permeameter testing using sand and soluble material mixtures, with the tests being numerically modelled.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号