首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Primodial retention of carbon by the terrestrial planets
Authors:John S Lewis  Stephen S Barshay  Barbara Noyes
Institution:1. Department of Earth and Planetary Sciences and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91109, USA
Abstract:Chemical equilibrium calculations on the stability of pure and dissolved graphite and cohenite (Fe3C), several other carbides, and several carbonates have been carried out for a system with solar elemental abundances over a very wide range of temperature and pressure. The calculated abundances of condensed carbon compounds are similar to the observed inventories on Earth and Venus, but fully 10 times smaller than the minimum carbon abundance found in ordinary chondrites. The total carbon content of most iron meteorites is compatible with their origin as a cooling FeNiCSP solution which was saturated with dissolved carbon at the solidus, such as would be produced by melting an ordinary chondrite, not by direct condensation from or equilibrium with the primitive solar nebula. It is argued that the carbon content of Mars need not be appreciably greater than that of the Earth. Material with even lower formation temperatures than Mars, such as the primitive material in the asteroid belt, may retain substantially more carbon as disequilibrium polymeric organic matter, possibly by the Fischer-Tropsch mechanism favored by Anders. Carbonates are not found as equilibrium products in a solar-composition system, and are probably secondary alteration products. CaCO3 might, however, persist in a solar-composition gas at temperatures below 460°K and pressures below 10?6.6 bar. The most stable condensed carbon compounds are found to be graphite, Fe3C, and possibly TiC, all in solid solution in the metal phase.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号