首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrogen cycling across the sediment-water interface in an eutrophic,artificially oxygenated lake
Authors:P Höhener  R Gächter
Institution:(1) Limnological Research Center, Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-6047 Kastanienbaum, Switzerland;(2) Present address: Institute of Terrestrial Ecology, Soil Biology, Swiss Federal Institute of Technology (ETHZ), Grabenstr 3, CH-8952 Schlieren, Switzerland
Abstract:Processes controlling the nitrogen (N) exchange between water and sediment in eutrophic Lake Sempach were studied using three different independent methods: benthic flux chambers, interstitial water data and hypolimnetic mass balances. The sediments released NH 4 + (1.1–16.1 mmoles m–2 d–1), NO 2 - (0.1–0.4 mmoles m–2 d–1) and dissolved organic N (<0.25 mmoles m–2 d–1). A net NO 3 - consumption (2.4–11.1 mmoles m–2 d–1) related to the NO 3 - concentrations in the overlying water was observed in all benthic chamber experiments. The flux of the reactive species NO 3 - and NH 4 + was found to depend on hydrodynamic conditions in the water overlying the sediment. For this reason, benthic chambers overestimated the fluxes of inorganic N compared to the other methods. Thus, in short-term flux chamber experiments the sediment may either become a sink or a source for inorganic N depending on the O2 concentration in the water overlying the sediment and the stirring rate. As demonstrated with a15NO 3 - experiment, nitrate-ammonification accounted for less than 12% of the total NO 3 - consumption. After six years of artificial oxygenation in Lake Sempach, a decrease in hypolimnetic total inorganic nitrogen (TIN) was observed in the last two years. The occurrence of dense mats of H2S-oxidizingBeggiatoa sp. indicated micro-aerobic conditions at the sediment surface. Under these conditions, a shorter distance between the ecological niches of nitrifying and denitrifying bacteria, and therefore a faster NO 3 - -transport, can possibly explain the lowering of TIN by enhanced net denitrification.
Keywords:Nitrogen cycling  sediment-water interface  sediment fluxes  denitrification  nitrification  diffusive boundary layer  Beggiatoa  artificial oxygenation of lakes  Lake Sempach
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号