首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nutrient inputs to the Choptank River estuary: Implications for watershed management
Authors:Lorie W Staver  K W Staver  J Court Stevenson
Institution:1. Horn Point Environmental Laboratory, University of Maryland System, P.O. Box 775, 21613, Cambridge, Maryland
2. College of Agriculture and Natural Resources Wye Research and Education Center, University of Maryland, P.O. Box 169, 21658, Queenstown, Maryland
3. Horn Point Environmental Laboratory, University of Maryland System, P.O. Box 775, 21613, Cambridge, Maryland
Abstract:Degraded water quality due to water column availability of nitrogen and phosphorus to algal species has been identified as the primary cause of the decline of submersed aquatic vegetation in Chesapeake Bay and its subestuaries. Determining the relative impacts of various nutrient delivery pathways on estuarine water quality is critical for developing effective strategies for reducing anthropogenic nutrient inputs to estuarine waters. This study investigated temporal and spatial patterns of nutrient inputs along an 80-km transect in the Choptank River, a coastal plain tributary and subestuary of Chesapeake Bay, from 1986 through 1991. The study period encompassed a wide range in freshwater discharge conditions that resulted in major changes in estuarine water quality. Watershed nitrogen loads to the Choptank River estuary are dominated by diffuse-source inputs, and are highly correlated to freshwater discharge volume. in years of below-average freshwater discharge, reduced nitrogen availability results in improved water quality throughout most of the Choptank River. Diffuse-source inputs are highly enriched in nitrogen relative to phosphorus, but point-source inputs of phosphorus from sewage treatment plants in the upper estuary reduce this imbalance, particularly during summer periods of low freshwater discharge. Diffuse-source nitrogen inputs result primarily from the discharge of groundwater contaminated by nitrate. Contamination is attributable to agricultural practices in the drainage basin where agricultural land use predominates. Groundwater discharge provides base flow to perennial streams in the upper regions of the watershed and seeps directly into tidal waters. Diffuse-source phosphorus inputs are highly episodic, occurring primarily via overland flow during storm events. Major reductions in diffuse-source nitrogen inputs under current landuse conditions will require modification of agricultural practices in the drainage basin to reduce entry rates of nitrate into shallow groundwater. Rates of subsurface nitrate delivery to tidal waters are generally lower from poorly-drained versus well-drained regions of the watershed, suggesting greater potential reductions of diffuse-source nitrogen loads per unit effort in the well-drained region of the watershed. Reductions in diffuse-source phosphorus loads will require long-term management of phosphorus levels in upper soil horizons. *** DIRECT SUPPORT *** A01BY074 00021
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号