首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Atmospheric Water Vapour on IRS NIR Measurements for Detecting Vegetation Signal. Part I: A Simulation Study Using MODTRAN
Authors:Mehul R Pandya  Raghavendra Pratap Singh  Sushma Panigrahy  Jai Singh Parihar
Institution:1.Space Applications Centre,ISRO, Ambawadi,Ahmedabad,India
Abstract:Quantitative remote sensing involving accurate estimation of vegetation properties relies greatly on the measurements of the near infrared (NIR) channel because of unique interaction property between light and leaf. It is generally assumed that the NIR measurements are made in the absence of atmospheric absorption. However, relatively weak water vapour absorption features still persist in the NIR channel, which has bearing on the quantitative estimates of the vegetation properties and long-term data series. This paper reports the results of a study that was carried out to infer the possible influence of the atmospheric water vapour (WV) on the NIR measurements (0.77–0.86 μm) of Indian Remote Sensing (IRS) satellite sensors through radiative transfer simulations using MODTRAN model. The study also suggests and evaluates the alternate band-positions for the NIR channel to improve the IRS NIR measurements. It was observed that the water absorption features present around 0.810 μm reduces the WV transmission of IRS NIR channel from 1 to 0.91 when atmospheric WV content increased from 0 to 6 g/cm2 and thus hampered the NIR reflectance by 14% as compared to reference signal. A significant improvement of the order of 6.5 to 12% in the NIR reflectance and 4.2 to 7% in NDVI was observed, when IRS NIR channel was split into NIR1 (0.775–0.805 μm) and NIR2 (0.845–0.875 μm) channels by avoiding the WV absorption features. The companion paper in this issue (Pandya et al. 2011) will support results of this simulation study through the EO1-Hyperion data analysis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号