首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The late-Holocene Gargano subaqueous delta,Adriatic shelf: Sediment pathways and supply fluctuations
Institution:1. Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Zamboni 67, 40127 Bologna, Italy;2. Geosciences & GIS Laboratory, Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090 Pesche, (IS), Italy;1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China;2. Institute of Urban Development, East China Normal University, Shanghai 200062, China;3. Estuary Research Center, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan;4. Geological Survey of Japan, AIST, Central 7, Higashi 1-1-1, Tsukuba 305-8567, Japan;5. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China;6. Department of Environmental & Geographical Science, University of Cape Town, Rondebosch 7701, South Africa;7. School of Geographic Sciences, East China Normal University, Shanghai 200241, China;8. College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
Abstract:The Gargano subaqueous delta formed on the eastern and southeastern sides of the Gargano promontory, in the western Adriatic. This subaqueous deposit represents the southernmost portion of the late-Holocene highstand systems tract (HST) growing along the western side of the Adriatic as an extensive wedge of deltaic and shallow-marine mud. The late-Holocene HST rests above a regional downlap surface that marks the time of maximum landward shift of the shoreline attained around 5.5 cal. kyr BP, at the end of the late-Pleistocene–Holocene sea-level rise. High-resolution seismic–stratigraphic and tephra correlation indicate the presence of a thin basal unit recording condensed deposition between 5.5 and 3.7 cal. kyr BP over much of the basin. Above this unit, sediment accumulation rates increased to high values (as much as 1.5 cm yr?1) reflecting the stabilisation of relative sea level and the forcing from high frequency climatic or anthropogenic changes affecting river dynamics. The late-Holocene mud wedge, of which the Gargano subaqueous delta is a significant component, reaches up to 35 m in thickness and has a volume of ca 180 km3. The shore-parallel thickness distribution of the mud wedge reflects the dominant oceanographic regime of the basin and the asymmetric location of the mostly western sediment sources (with a combined modern delivery of 51.7×106 t yr?1 of mean suspended load). In sections perpendicular to the coast the late-Holocene mud wedge appears composed of forestepping clinoforms with gently dipping foresets (typically 0.5°). The Gargano subaqueous delta is characterised by a submarine topset in water depths shallower than 25–28 m, and accounts for about 1/7th of the total volume of the late-Holocene mud wedge, despite the absence of direct river supply to the Gargano area. In the area of maximum interaction between shore-parallel currents and basin morphology, progradation occurs onto a flat and barren bedrock outcrop in about 50–80 m water depth. The rapid transition from a thickness of 30 m of late-Holocene mud to nil is a good indication of the role of southward-flowing bottom-hugging shelf currents in causing the redistribution of sediment along the Adriatic inner shelf. Additional evidence of this regime comes from: (1) the most recent sigmoid (defined at seismic–stratigraphic scale) deposited since the onset of the Little Ice Age, showing a shore-parallel thickness distribution and a main depocentre to the southeast of the Gargano promontory; (2) the maximum values of sediment accumulation rates over the last century (documented by 210Pb measurements) defining a narrow shore-parallel belt immediately seaward of the depocentre of the most recent sigmoid. The Gargano subaqueous delta grows from the outbuilding of progressively younger progradational sigmoids that tend to parallel the previous ones. The Gargano subaqueous delta differs from other documented late-Holocene subaqueous deltas because its growth reflects: (1) sediment transport dominated by bottom currents sub-parallel to the strike of the composing clinoforms; (2) a complex supply regime including the Po delta (350 km to the north) and several coalescing Apennine rivers acting as ‘line source’; (3) several alternating intervals of enhanced outbuilding and condensed deposition; and (4) an in-phase growth of the most recent sigmoid with the major progradation of the Po delta during the Little Ice Age.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号