首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New equations for binary gas transport in porous media,Part 2: experimental validation
Institution:1. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA;2. Department of Land, Air and Water Resources, University of California, Davis One Shields Avenue, Davis, CA 95616, USA;3. Department of Chemical Engineering, University of California, Davis One Shields Avenue, Davis, CA 95616, USA;1. Centre for Environmental Engineering Research and Education (CEERE), Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada;2. Council of Scientific and Industrial Research-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India;1. Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62209, Mexico;2. Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Pue. 72570, Mexico;3. Departamento de Materia Condensada/Instituto de Física UNAM, Circuito de la Investigación Científica Ciudad Universitaria, C.P. 04510, Mexico;4. Centro de Investigación en Materiales Avanzados, S.C. (CIMAV), Miguel de Cervantes 120, C.P. 31136 Chihuahua, Chihs., Mexico;1. Departamento de Ciencias Computacionales e Ingenierías, CUVALLES, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km 45.5, 46600 Ameca, Jalisco, Mexico;2. Departamento de Química, CUCEI, Universidad de Guadalajara, 44410 Guadalajara, Jalisco, Mexico;3. Departamento de Electrónica y Computación, CUCEI, Universidad de Guadalajara, 44410 Guadalajara, Jalisco, Mexico;4. CONACyT, Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, Av. José Guadalupe Zuno 48, los Belenes, 45100 Zapopan, Jalisco, Mexico;5. Nanociencias y Nanotecnología, CINVESTAV, IPN, 07360, Mexico;6. Departamento de Física, CINVESTAV, IPN, 07360, Mexico;7. Departamento de Ingeniería de Proyectos, CUCEI, Universidad de Guadalajara, 44410 Guadalajara, Jalisco, Mexico;8. Departamento de Matemáticas, CUCEI, Universidad de Guadalajara, 44410 Guadalajara, Jalisco, Mexico;9. Departamento de Física, CUCEI, Universidad de Guadalajara, 44410 Guadalajara, Jalisco, Mexico;1. Postgraduate Program in Materials Science and Engineering, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil;2. Postgraduate Program of Chemistry, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil;3. Department of Chemistry, Federal Institute of Maranhão, 65030-005 São Luís, Brazil;4. Escola Agrícola de Jundiaí, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil
Abstract:A previous study Water Resour Res 39 (3) (2003) doi:10.1029/2002WR001338] questioned the validity of the traditional advection–dispersion equation for describing gas flow in porous media. In an original mathematical derivation presented in Part 1 Adv Water Resour, this issue] we have demonstrated the theoretical existence of two novel physical phenomena which govern the macroscopic transport of gases in porous media. In this work we utilize laboratory experiments and numerical modeling in order to ascertain the importance of these novel theoretical terms. Numerical modeling results indicate that the newly derived sorptive velocity, arising from closure level coupling effects, does not contribute noticeably to the overall flux, under the conditions explored in this work. We demonstrate that the newly discovered “slip coupling” phenomenon in the mass conservation equation plays an important role in describing the physics of gas flow through porous solids for flow regimes of both environmental and industrial interest.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号