首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Natural nuclear fission reactors: time constraints for occurrence,and their relation to uranium and manganese deposits and to the evolution of the atmosphere
Institution:1. Institute of Geosciences and Engineering, Federal University of Western Pará (UFOPA), Santarém, Pará, Brazil;2. Institute of Geosciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil;3. Centre for Geobiology and Geochemistry, School of Earth and Environmental Sciences, Cardiff University, United Kingdom;4. Geology Graduate Program (PPGG), Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil;5. Department of Geological and Environmental Sciences, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel;6. Institute of Earth Surface Dynamics, University of Lausanne, 1015, Lausanne, Switzerland
Abstract:Knowledge of the formation conditions of Francevillian uranium and manganese ore deposits as well as natural fission reactors sheds light on the early evolution of the atmosphere between 1950 and 2150 Ma ago. The model explaining the formation of the Oklo uranium deposits suggests that at the time of sediment deposition in the Franceville basin 2150 million years ago, the oxygen deficient atmosphere would have inhibited uranium dissolution. Dissolution of uranium was only possible during later diagenesis, approximately 1950 Ma. Reduction reactions in the presence of hydrocarbons allowed precipitation of dissolved uranium to U4+, forming deposits with high enough uranium contents to trigger subsequent nuclear fission reactions. Such a model is in agreement with earlier suggestions that oxygen contents in atmosphere increased during a ‘transition phase’ some 2450–2100 Ma ago. The manganese deposits were formed before the uranium deposits, during the deposition of the black shales and very early diagenesis, and thus at a time when oxygen content in atmosphere was very low. Carbon isotopes data of organic matter show decrease of δ13C upward in the Francevillian series (?20 to ?46% PDB) reflecting the high CH4 and low O2 contents in the atmosphere during sediment deposition. This favoured anoxic conditions during deposition of the basinal FB black shales and likewise the migration of Mn over long distances. The manganese precipitated first as Mn-oxides at the shallow edges of the Franceville basin, in photic zones, where photosynthetic organisms flourished. Mn-oxides were then reduced in the black shales forming Mn-carbonates when conditions became more reducing during transgression episodes and/or the first stages of burial. In the black shales, reducing conditions prevailed until recent weathering, allowing the good preservation of organic matter and the Mn deposits. The present-day alteration is responsible for the dissolution of Mn-carbonates and precipitation of Mn-oxides at the water table to form the high grade Mn ore (45–50% Mn). Development of photosynthesizing organisms, a volcanic source of the Mn, and favourable palaeogeography of the Francevillian basins are all important parameters for the formation of the Mn deposits. For the occurrence of the natural nuclear reactors, the age of 2.0 Ga is the main parameter that controls the abundance of fissile 235U and the critical mass. Before 2.0 Ga the 235U/238U ratio was sufficiently high for fission reactions to occur but conditions favourable for forming high grade uranium ores were not achieved. Then, after 2.0 Ga the increase of oxygen in the atmosphere commonly led to the formation of high grade uranium ores in which the 235U/238U ratio was too low to support criticality.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号