首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Duplex style and triangle zone formation: insights from physical modeling
Institution:1. Dipartimento di Scienze della Terra, dell''Ambiente e delle Risorse, Università Federico II, Napoli, Italy;2. NEXT — Natural and Experimental Tectonics Research Group, Dipartimento di Fisica e Scienze della Terra “Macedonio Melloni”, Università di Parma, Italy;3. Sorbonne Universités, UPMC Univ. Paris 06, UMR 7193, ISTeP, Paris, France;4. CNRS, UMR 7193, ISTEP, F-75005, Paris, France;5. Geomodels, Departament de Geodinàmica i Geofísica, Facultat de Geologia, Universitat de Barcelona, Spain
Abstract:Duplexes are a common feature in thrust belts at many scales. Their geometries vary significantly from antiformal stacks with significant forethrusting in the cover (e.g. southern Pyrennes, Spain) to triangle zones (e.g. foreland Canadian Rockies) to low-displacement individually spaced ramp-anticlines (e.g. Sub-Andean thrust belt, Bolivia). We present a series of physical experiments demonstrating that the strength of the décollements relative to that of the intervening and overlying rock layers plays a significant role in controlling the duplex style. The models comprise brittle layers made of dry quartz sand and décollements made of two types of viscous silicone polymers. The strength of the décollements in the models is a function of the shortening rate applied to the model. The relative strength of the décollements and surrounding rocks affects the development of active- or passive-roof duplexes (triangle zones). It also affects the amount of translation of individual thrust blocks and the spacing of thrust ramps, which in turn determine if a duplex evolves into an antiformal stack or into individually spaced ramp-anticlines. Model results indicate that specific associations of structural features form systematically under similar rheological and boundary conditions. The presence of relatively strong décollements promotes local underthrusting of the cover, individual ramp-anticlines, internal deformation of thrust sheets, low early layer-parallel shortening, and sequential towards-the-foreland propagation of structures. Weak décollements promote forethrusting of the cover, antiformal stacks, coeval growth of structures, and low internal strain, with the exception of significant early layer-parallel shortening. No underthrusting at a regional scale occurred in any model.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号