首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix
Institution:1. University of Göttingen, Geoscience Centre, Applied Geology, Goldschmidtstraße 3, 37077 Göttingen, Germany;3. Al-Quds University, Department of Earth and Environmental Studies, P.O.B. 20002, Jerusalem, West Bank, Palestine;4. University of Freiburg, Chair of Hydrology, Fahnenbergplatz, 79098 Freiburg, Germany
Abstract:In karst aquifers with significant matrix permeability, water and solutes are exchanged between the conduits and carbonate matrix. Transport through the matrix increases the spread of solutes and increases travel times. This study numerically evaluates advective solute transport in synthetic karst systems that contain 3D branching conduit networks. Particle tracking is performed to analyze the spatial and temporal transport history of solute that arrives at the conduit outlet. Three measures of transport connectivity are used to quantify the solute migration behavior: the skewness of the particle arrival time distribution, the normalized fifth percentile of arrival times, and the fraction of the total travel time that occurs within conduits. All three of these metrics capture the influence of conduit network geometry on solute transport. A more tortuous network leads to enhanced conduit-matrix mixing, which reduces the transport connectivity and yields a broader distribution of solute arrival times. These results demonstrate that the conduit network geometry is an important control on solute transport in karst systems with a permeable matrix.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号