首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetotelluric image of the crust and upper mantle in the backarc of the northwestern Argentinean Andes
Authors:Pamela Lezaeta  Miguel Muñoz  Heinrich Brasse
Institution:Fachrichtung Geophysik, Freie Universität Berlin, Malteserstrasse;74–100, Berlin, D-12249, Germany. E-mail: Jorge Matte;2005, Santiago, Chile.
Abstract:Magnetotelluric data from the backarc of the Central Andes in NW Argentinawere re-examined by employing impedance tensor decomposition and 2-D inversion and modelling techniques. The data in the period range of 50–15 000 s were collected on a profile of 220 km length reaching from the Eastern Cordillera across the Santa Barbara System to the Andean foreland of the Argentinean Chaco.
After a dimensionality analysis, data from most sites were treated as regional 2-D. The exception was the eastern section of the profile, where the magnetotelluric transfer functions for periods ≤ 1000 s reflect a 3-D earth. Application of two tensor decomposition schemes yielded a regional strike direction of N–S, which is the azimuth of the Central Andean mountain chains. Several 2-D models were obtained by pseudo- and full 2-D Occam inversion schemes. Special emphasis was placed on the inversion of phase data to reduce the influence of static shifts in the apparent resistivity data. The smooth inversion models all show a good conductor at depth. A final model was then calculated using a finite element forward algorithm.
The most prominent feature of the resulting model is a conductor which rises from depths of 180 km below the Chaco region to 80 km beneath the Santa Barbara System and the Eastern Cordillera. Its interpretation as a rise of the electrical asthenosphere is supported by seismic attenuation studies. Magnetotelluric results, surface heat-flow distribution in the area, and the electrical properties of crustal and mantle rocks suggest that the upper mantle is predominantly ductile beneath the Eastern Cordillera and the western Santa Barbara System. This generally agrees with anelastic seismic attenuation models of the area and is useful in discriminating between models of Q quality factor distribution.
Keywords:2-D inversion  asthenosphere  Central Andes  decomposition  magnetotellurics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号