首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calorimetric study of high-pressure phase transitions among the CdGeO3 polymorphs (pyroxenoid,garnet, ilmenite,and perovskite structures)
Authors:Masaki Akaogi  Alexandra Navrotsky
Institution:1. Department of Earth Sciences, Kanazawa University, 920, Kanazawa, Japan
2. Department of Geological and Geophysical Sciences, Princeton University, 08544, Princeton, NJ, USA
Abstract:At high pressures, CdGeO3 pyroxenoid transforms to garnet, then to ilmenite, and finally to perovskite. Enthalpies of transition among the four phases were measured by high temperature calorimetry. The entropies of transition and slopes of the boundaries were calculated using the measured enthalpies and free energies calculated from the phase equilibrium data. Pyroxenoid and garnet are very similar energetically. However garnet is a high pressure phase because of its lower entropy and smaller volume. The pyroxenoid-garnet transition has a small positiveP-T slope. Ilmenite is intermediate in enthalpy between garnet and perovskite, but is lower in entropy than both phases. Therefore the garnet-ilmenite transition has a positivedP/dT, while a negativedP/dT is calculated for the ilmenite-perovskite transition. The thermochemical data for the CdGeO3 phases are generally consistent with the observed high pressure phase relations. The high entropy of perovskite relative to ilmenite, observed in several ABO3 comounds including CdGeO3, is related to the structural features of perovskite, in which relatively small divalent cations occupy the large sites of 8–12 fold coordination. The thermochemistry of the CdGeO3 polymorphs shows several similarities to that of the CaGeO3 system.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号