首页 | 本学科首页   官方微博 | 高级检索  
     检索      


From stable dipolar towards reversing numerical dynamos
Authors:C Kutzner  UR Christensen
Institution:Institut für Geophysik, Universität Göttingen, Herzberger Landstrasse 180, 37075 Göttingen, Germany
Abstract:We are using a three-dimensional convection-driven numerical dynamo model without hyperdiffusivity to study the characteristic structure and time variability of the magnetic field in dependence of the Rayleigh number (Ra) for values up to 40 times supercritical. We also compare a variety of ways to drive the convection and basically find two dynamo regimes. At low Ra, the magnetic field at the surface of the model is dominated by the non-reversing axial dipole component. At high Ra, the dipole part becomes small in comparison to higher multipole components. At transitional values of Ra, the dynamo vacillates between the dipole-dominated and the multipolar regime, which includes excursions and reversals of the dipole axis. We discuss, in particular, one model of chemically driven convection, where for a suitable value of Ra, the mean dipole moment and the temporal evolution of the magnetic field resemble the known properties of the Earth’s field from paleomagnetic data.
Keywords:Geodynamo simulations  Geomagnetism  Reversals
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号