首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron delocalization and magnetic behavior in a single crystal of ilvaite,a mixed valence iron silicate
Authors:D Ghosh  T Kundu  S Dasgupta  Subralā Ghose
Institution:1. Department of Magnetism, Indian Association for the Cultivation of Science, 700 032, Jadavpur, Calcutta, India
2. Mineral Physics Group, Department of Geological Sciences, University of Washington, 98195, Seattle, WA, USA
Abstract:Ilvaite, Ca(Fe2+, Fe3+)Fe2+Si2O8(OH), a black mixed valence iron silicate shows considerable Fe2+?Fe3+ electron delocalization above 400 K, reminiscent of magnetite. A crystallographic phase transition from orthorhombic (Pnam) to monoclinic (P2 1/a) symmetry takes place on cooling at 343 K induced by electron ordering. In both phases, Fe2+ and Fe3+ occur in double octahedral chains parallel to the c axis. The thermal characteristics of the magnetic susceptibilities and their anisotropies in different crystallographic planes have been measured in the temperature range 400?21 K. Below 343±1K, a continuous rotation of the molar susceptibility K in the ab plane down to 90±2 K is observed, where the symmetry of the magnetic ellipsoid remains unchanged. X a, X b and X c increase abruptly below 123±0.5 K, although antiferromagnetic ordering of Fe2+ and Fe3+ spins on A sites was suggested in previous Mössbauer and neutron powder diffraction studies. In addition, 1/X a shows an antiferromagnetic maximum at 50±3 K, whereas 1/X b and 1/X c at first increase sharply below 123 K, followed by antiferromagnetic curvatures in the lowest temperature region. This behavior is consistent with the antiferromagnetic ordering of Fe2+ spins in the B sites. The observed magnetic phenomena suggest charge delocatization effects between adjacent Fe2+(A)-Fe3+(A) pairs not only along c, but also along a and b directions. The negative sign of the molar anisotropy (K -K) suggests a singlet ground State 5A1 for the Fe2+ ions, in agreement with previous Mössbauer studies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号