首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reuse of Drinking Water Treatment Waste for Remediation of Heavy Metal Contaminated Groundwater
Authors:Ryan R Holmes  Megan L Hart  John T Kevern
Abstract:Lime softening produces an estimated 10,000 metric tons of dry drinking water treatment wastes (DWTW) per year, costing an estimated one billion dollars annually for disposal worldwide. Lime softening wastes have been investigated for reuse as internal curing agents or supplementary cementitious materials in concrete as well as a high-capacity sorbent for heavy metal removal. Lead, cadmium, and zinc are common heavy metals in groundwater contaminated by mine tailings. Cement-based filter media (CBFM) are a novel material-class for heavy metal remediation in groundwater. This study investigated the incorporation of DWTW as a recycled, low-cost additive to CBFM for the removal of lead, cadmium, and zinc. Jar testing at three different metal concentrations and breakthrough column testing using synthetic groundwater were performed to measure removal capacity and reaction kinetics. Jar testing results show as DWTW content increases at low concentrations, removal approaches 100% but at high metal concentrations removal decreases due to saturation or exhaustion of the removal mechanisms. Removal occurs through the formation of metal carbonate precipitates, surface sorption, and ion exchange with calcium according to the preferential series Pb+2 > Zn+2 > Cd2+. Removal kinetics were also measured through column testing and exceeded estimated calculations derived from batch jar testing isotherms due to the large formation of oolitic metal carbonates. Lead, cadmium, and zinc was concentrated in the column precipitates from 0.29, 0.23, and 20.0 μg/g in the influent solution to approximately 200, 130, 14,000 μg/g in the reacted DWTW-CBFM. The control and DWTW-CBFM columns had statically similar removal for zinc and lead. In the DWTW-CBFM, cadmium had decreased removal of approximately 25% due to proportionately decreased hydroxide content from cement replacement with 25% DWTW. This study shows the potential for DWTW as an enhancement to CBFM, thereby valorizing an otherwise waste material. Furthermore, the concentrative abilities of CBFM through precipitate and oolitic mineral formation could provide a minable waste product and close the waste-product cycle for DWTW.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号