首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shear-wave velocity estimation using a combination of ambient noise from small aperture array and small-scale active seismic measurements: a case study in the area of the natural gas fields of Northern Germany
Authors:Moritz Fehr  Simon Kremers  Ralf Fritschen
Institution:1.Ruhr-Universit?t Bochum,Bochum,Germany;2.DMT GmbH & Co. KG,Essen,Germany
Abstract:In recent years, numerous induced seismic events have occurred in the proximity of the natural gas field in Northern Germany. To monitor the seismicity and to asses the seismic hazard potential, a local monitoring network was installed in the area. Focusing on the seismicity hazard assessment, a major challenge is the characterisation of potential site effects due to local soil characteristics. This is quantitatively performed by estimating the shear-wave velocity (V s) variation with subsurface layer thickness. Such local effects can only be covered with a coarse spatial resolution due to the limited number of monitoring stations. Profiles were determined at three test sites (Langwedel, Walle and Bomlitz) by using a combined approach of small aperture 2D array ambient noise and small-scale active 1D measurements. The high-resolution frequency-wavenumber (HRFK), spatial autocorrelation (SPAC) and multichannel analysis of surface waves (MASW) methods were applied to the recorded ambient noise and active seismic data using various array sizes supplemented by the active measurements. This jointly allowed obtaining phase velocity dispersion curves covering a wide frequency range from 2 up to 32 Hz. The inversion of the obtained dispersion curves results in average S-wave velocity profiles down to depths of 70 m, identifying thin near-surface layers of a few meters as well as thicker layers of tens of meters in greater depth. A comparison with available borehole data shows a good correlation with the layering. Additionally, to asses the impact of a seismic event at the test sites, PGV estimations for various seismic events were performed. The final results of the test surveys demonstrate that the combined approach represents a suitable tool for near-surface characterisation, which can be used to improve the seismic hazard assessment in the area of the natural gas fields in Northern Germany.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号