首页 | 本学科首页   官方微博 | 高级检索  
     检索      


http://www.sciencedirect.com/science/article/pii/S1674987111000478
Authors:Minghui Ju  Chongbin Zhao  Tagen Dai  Jianwen Yang
Institution:1. Computational Geosciences Research Center, Central South University, Changsha 410083, China;The Key Laboratory of Chinese Education Ministry for Non-ferrous Metal Metallogenic Prediction,Central South University, Changsha 410083, China
2. Department of Earth and Environmental Sciences, University of Windsor, Canada
Abstract:Convective heat transfer associated with the circulation of pore-fluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Sn-polymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dachang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district.
Keywords:Finite element modeling  Dachang ore district  Hydrothermal mineralization  Salinity-induced buoyancy
本文献已被 CNKI 维普 万方数据 ScienceDirect 等数据库收录!
点击此处可从《地学前缘(英文版)》浏览原始摘要信息
点击此处可从《地学前缘(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号