首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equilibrium Atmospheric Boundary-Layer Flow: Computational Fluid Dynamics Simulation with Balanced Forces
Authors:Xuhui Cai  Qing Huo  Ling Kang  Yu Song
Institution:1. College of Environmental Sciences and Engineering, Peking University, Beijing?, 100871, China
2. State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing?, 100871, China
Abstract:Forcing relationships in steady, neutrally stratified atmospheric boundary-layer (ABL) flow are thoroughly analyzed. The ABL flow can be viewed as balanced between a forcing and a drag term. The drag term results from turbulent stress divergence, and above the ABL, both the drag and the forcing terms vanish. In computational wind engineering applications, the ABL flow is simulated not by directly specifying a forcing term in the ABL but by specifying boundary conditions for the simulation domain. Usually, these include the inflow boundary and the top boundary conditions. This ‘boundary-driven’ ABL flow is dynamically different from its real counterpart, and this is the major reason that the simulated boundary-driven ABL flow does not maintain horizontal homogeneity. Here, first a dynamical approach is proposed to develop a neutrally stratified equilibrium ABL flow. Computational fluid dynamics (CFD) software (Fluent 6.3) with the standard \(k\) \(\varepsilon \) turbulence model is employed, and by applying a driving force profile, steady equilibrium ABL flows are simulated by the model. Profiles of wind speed and turbulent kinetic energy (TKE) derived using this approach are reasonable in comparison with the conventional logarithmic law and with observational data respectively. Secondly, the equilibrium ABL profiles apply as inflow conditions to simulate the boundary-driven ABL flow. Simulated properties between the inlet and the outlet sections across a fetch of 10 km are compared. Although profiles of wind speed, TKE, and its dissipation rate are consistently satisfactory under higher wind conditions, a deviation of TKE and its dissipation rate between the inlet and outlet are apparent (7–8 %) under lower wind-speed conditions (2 m s \(^{-1}\) at 10 m). Furthermore, the simulated surface stress systematically decreases in the downwind direction. A redistribution of the pressure field is also found in the simulation domain, which provides a different driving pattern from the realistic case in the ABL.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号