首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Io's surface composition based on reflectance spectra of sulfur/salt mixtures and proton-irradiation experiments
Authors:Douglas B Nash  Fraser P Fanale
Institution:Jet Propulsion Laboratory, Pasadena, California 91103, USA
Abstract:The available full-disk reflectance spectra of Io in the range 0.3 to 2.5 μm have been interpreted by comparison with new laboratory spectra of a wide variety of natural and synthetic mineral phases in order to determine a surface compositional model for Io that is consistent with Io's other known chemical and physical properties. Our results indicate that the dominant mineral phases are sulfates and free sulfur derived from them, which points toward a low temperature and initially water-rich surface assemblage. Our current preferred mineral phase mixture that best matches the Io data and is simultaneously most consistent with other constraints, consists of a fine-grained particulate mixture of free sulfur (55 vol%), dehydrated bloedite Na2Mg(SO4)2·xH2O] (30 vol%) ferric sulfate Fe2(SO4)3·xH2O] (15 vol%), and trace amounts of hematite Fe2O3]. Other salts may be present, such as halite and sodium nitrate, as well as clay minerals. Such a model is consistent with a probable pre- and post-accretion thermal history of Io-forming material and Io's observed Na emission and other properties. These results further support the evaporite surface hypothesis of Fanale et al'; while not precluding the presence of certain silicate phases such as montmorillonite.The average surface of Io's leading hemisphere appears to contain less free sulfur and more salts and to be finer grained than that of the trailing hemisphere. Since Io is immersed in Jupiter's magnetosphere, irradiation damage effects from low-energy proton bombardment were studied. Irradiation damage of lattices is estimated to be a relatively minor but operative process on the surface of Io; irradiation darkening by sulfate reduction to free sulfur and by F-center production in salts may be partly responsible for the differences in albedo of leading and trailing hemispheres and equatorial and polar regions of Io, but slight regional differences in relative intrinsic phase concentration on the surface may likewise account for these global variations in albedo.Possible unusual surface properties predicted by this model include: posteclipse darkening in certain wavelenghts, limb brightening in certain wavelengths, and unusual surface electrical properties. Further refinement of Io's surface composition model and better understanding of surface irradiation effects will be possible when observational data in the range 0.20 to 0.30 μm are obtained and when improved spectra in the range 0.30 to 5.0 μm are obtained having increased spectral, spatial, and temporal resolution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号