首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomechanical effects of trees in an old‐growth temperate forest
Authors:Pavel ?amonil  Pavel Daněk  Anna Senecká  Du?an Adam  Jonathan D Phillips
Institution:1. Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic;2. Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic;3. Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic;4. Earth Surface Systems Program, Department of Geography, University of Kentucky, Lexington, KY, USA
Abstract:The role of biomechanical effects of trees (BETs) in ecosystem and landscape dynamics is poorly understood. In this study, we aim to (i) describe a widely applicable methodology for quantifying the main BETs in soil, and (ii) analyze the actual frequencies, areas and soil volumes associated with these effects in a mountain temperate old‐growth forest. The research took place in the Boubínský Primeval Forest in the Czech Republic; this forest reserve, predominated by Fagus sylvatica L. and Picea abies (L.) Karst., is among the oldest protected areas in Europe. We evaluated the effects of 4000 standing and lying trees in an area of 10.2 ha from the viewpoint of the following features: tree uprooting, root mounding, bioprotection, trunk baumsteins (rock fragments displaced by trunk growth), root baumsteins, stump hole infilling, trunk and root systems displacements, depressions formed after trunk fall, stemwash, and trunkwash. BETs were recorded in 59% of standing and 51% of lying dead trees (excluding the pervasive soil displacement by thickening trunks and roots and the infilling of decayed stumps). Approximately one tenth of the trees showed simultaneous bioprotective and bioerosion effects. Different tree species and size categories exhibited significantly different biomechanical effects. A bioprotective function was the most frequent phenomenon observed, while treethrows prevailed from the viewpoint of areas and soil volumes affected. The total area influenced by the BETs was 342 m2 ha?1. An additional 774 m2 ha?1 were occupied by older treethrow pit‐mounds with already decayed uprooted trunks. The total volume of soil associated with the studied phenomena was 322 m3 ha?1, and apart from treethrows, volumes of the living and decaying root systems and bioprotective functions predominated. Other processes were not so frequent but still significant for biogeomorphology. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:tree–  soil interactions  hillslope processes  soil erosion  ecosystem engineering  old‐growth temperate forest dynamics  beech  Podzols
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号