首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Population synthesis of planet formation using a torque formula with dynamic effects
摘    要:Population synthesis studies into planet formation have suggested that distributions consistent with observations can only be reproduced if the actual Type Ⅰ migration timescale is at least an order of magnitude longer than that deduced from linear theories.Although past studies considered the effect of the Type I migration of protoplanetary embryos,in most cases they used a conventional formula based on static torques in isothermal disks,and employed a reduction factor to account for uncertainty in the mechanism details.However,in addition to static torques,a migrating planet experiences dynamic torques that are proportional to the migration rate.These dynamic torques can impact on planet migration and predicted planetary populations.In this study,we derived a new torque formula for Type Ⅰ migration by taking into account dynamic corrections.This formula was used to perform population synthesis simulations with and without the effect of dynamic torques.In many cases,inward migration was slowed significantly by the dynamic effects.For the static torque case,gas giant formation was effectively suppressed by Type I migration;however,when dynamic effects were considered,a substantial fraction of cores survived and grew into gas giants.

收稿时间:24 February 2016

http://dx.doi.org/10.1016/j.gsf.2016.04.002
Authors:Takanori Sasaki  Toshikazu Ebisuzaki
Institution:1. Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan;2. RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Abstract:Population synthesis studies into planet formation have suggested that distributions consistent with observations can only be reproduced if the actual Type I migration timescale is at least an order of magnitude longer than that deduced from linear theories. Although past studies considered the effect of the Type I migration of protoplanetary embryos, in most cases they used a conventional formula based on static torques in isothermal disks, and employed a reduction factor to account for uncertainty in the mechanism details. However, in addition to static torques, a migrating planet experiences dynamic torques that are proportional to the migration rate. These dynamic torques can impact on planet migration and predicted planetary populations. In this study, we derived a new torque formula for Type I migration by taking into account dynamic corrections. This formula was used to perform population synthesis simulations with and without the effect of dynamic torques. In many cases, inward migration was slowed significantly by the dynamic effects. For the static torque case, gas giant formation was effectively suppressed by Type I migration; however, when dynamic effects were considered, a substantial fraction of cores survived and grew into gas giants.
Keywords:Planetary formation  Population synthesis  Type I migration
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《地学前缘(英文版)》浏览原始摘要信息
点击此处可从《地学前缘(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号