首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting wetted width in any river at any discharge
Authors:DJ Booker
Institution:National Institute of Water and Atmospheric Research, P O Box 8602 Riccarton, Christchurch, New Zealand
Abstract:Coefficients describing at‐a‐station power‐law relationships between discharge and width were calculated by applying multilevel models to field data collected during routine hydrological monitoring at 326 gauging stations across New Zealand. These hydraulic geometry coefficients were then estimated for each of these stations using standard stepwise multiple‐linear regression models. Analysis was carried out to quantify how the relationship between width and discharge changed in relation to several available explanatory variables. All coefficients describing the at‐a‐station hydraulic geometry were found to have statistically significant relationships with catchment area. Statistically significant relationships between each of the coefficients were also found with the addition of catchment climate as an explanatory variable. Further statistically significant relationships were found when station elevation and channel slope, as well as hydrological source of flow and landcover of the upstream catchment were added to the explanatory variables. The level of confidence that can be associated with estimates of width at ungauged sites, and sites with limited data availability, was then assessed by comparing model predictions with independent paired data on observed width and discharge from 197 sites. When compared against these independent data, model predictions of width were improved with the addition of predictor variables of the hydraulic geometry coefficients. The greatest improvements were made when climate was added to catchment area as predictor variables. Minor improvements were made when all available information was used to predict width at these independent sites. Although the analysis was purely empirical, results describing relationships between hydraulic geometry coefficients and catchment characteristics corresponded well with knowledge of the processes controlling at‐a‐station hydraulic geometry of river width. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:hydraulic geometry  river width  multilevel models  New Zealand
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号