首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Empirical prediction of debris‐flow mobility and deposition on fans
Authors:Christian Scheidl  Dieter Rickenmann
Institution:1. Institute of Mountain Risk Engineering (IAN), Department of Civil Engineering and Natural Hazards, Peter‐Jordan Strasse 82, Vienna, Austria;2. WSL Birmensdorf, Mountain Hydrology and Torrents, Birmensdorf, Canton Zurich, Switzerland
Abstract:A new method to predict the runout of debris flows is presented. A data base of documented sediment‐transporting events in torrent catchments of Austria, Switzerland and northern Italy has been compiled, using common classification techniques. With this data we test an empirical approach between planimetric deposition area and event volume, and compare it with results from other studies. We introduce a new empirical relation to determine the mobility coefficient as a function of geomorphologic catchment parameters. The mobility coefficient is thought to reflect some of the flow properties during the depositional part of the debris‐flow event. The empirical equations are implemented in a geographical information system (GIS) based simulation program and combined with a simple flow routing algorithm, to determine the potential runout area covered by debris‐flow deposits. For a given volume and starting point of the deposits, a Monte‐Carlo technique is used to produce flow paths that simulate the spreading effect of a debris flow. The runout zone is delineated by confining the simulated potential spreading area in the down slope direction with the empirically determined planimetric deposition area. The debris‐flow volume is then distributed over the predicted area according to the calculated outflow probability of each cell. The simulation uses the ARC‐Objects environment of ESRI© and is adapted to run with high resolution (2·5 m × 2·5 m) digital elevation models, generated for example from LiDAR data. The simulation program called TopRunDF is tested with debris‐flow events of 1987 and 2005 in Switzerland. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:debris‐flow mobility  runout prediction  GIS‐based modeling  LiDAR
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号