首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Relative contribution of various climatic processes in disintegration of clay-bearing rocks
Authors:ZA Erguler  A Shakoor
Institution:aDepartment of Geological Engineering, Dumlupinar University, 43100 Kutahya, Turkey;bDepartment of Geology, Kent State University, Kent, Ohio, 44242, USA
Abstract:The climatic processes of heating and cooling, wetting and drying, and freezing and thawing affect the disintegration characteristics of clay-bearing rocks (shales, claystones, mudstones, and siltstones) to varying degrees. Although heating and cooling, wetting and drying, and freezing and thawing are known to be the main processes responsible for physical disintegration of rocks under natural conditions, most of the previous investigators have used methods based only on water content variations (e.g., jar slake, slake index, and slake durability index tests) to assess the disintegration of clay-bearing rocks. Such assessments may not be adequate to explain the field behaviour of clay-bearing rocks subjected to a full range of climatic processes. In order to evaluate the combined effects as well as relative contributions of various climatic processes on the disintegration behaviour, samples of selected clay-bearing rocks, consisting of 5–6 particles, each weighing 85–150 g, were subjected to multiple cycles of heating and cooling, wetting and drying, and freezing and thawing. These treatments resulted in fragmentation of samples with fragments ranging from 50 to 2 mm and finer in dimensions. A new approach, referred to as the disintegration ratio, and defined as the area under the grain size distribution curve of the disintegrated material to the total area encompassing all grain size distribution curves of the samples, was used to account for fragmentation into varying sizes. Statistical analyses were performed to investigate the relationship between fragmentation, mineralogical composition, and physical properties.
Keywords:Clay-bearing rocks  Durability  Heating and cooling  Wetting and drying  Freezing and thawing  Disintegration ratio
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号