首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanisms of sulfur introduction chemically controlled: δS imprint
Authors:Alon Amrani  Zeev Aizenshtat  
Institution:Department of Organic Chemistry and Casali Institute, The Hebrew University, Jerusalem 91904, Israel
Abstract:Organic sulfur in marine sediment is 34S enriched relative to the co-existing pyrite. This phenomenon is still enigmatic. Timing of the sulfur incorporation, immobilization and different sulfur species involved are part of the explanations. The reduced sulfur species incorporation into organic matter (OM) is generally assumed to have negligible δ34S fractionation. This assumption has never been confirmed by laboratory experimental data. The present study measures the δ34S changes resulting from reduced sulfur species (sulfides and polysulfide anions) incorporation into organic model compounds in an aquatic and low temperature (25 °C) system that simulates diagenetic marine environment. In addition, we also investigate the δ34S fractionation and the isotope chemical mixing in the formation of polysulfide anions produced from elemental sulfur and sulfide anions. The results showed total isotope mixing between the two species in the formation of polysulfides. Acidification of the polysulfides solution caused δ34S fractionation between the released elemental sulfur and H2S. The incorporation of polysulfides and sulfides into carbonyl groups, caused 34S enrichment relative to the starting polysulfides and sulfide of 4–5‰. The 34S enrichment of the sulfurized carbonyl groups showed a minimal effect by temperature (0–70 °C) and is not affected by salinity, polysulfides composition, reaction time or solubility in water. The incorporation of polysulfides and sulfides into brominated organic compounds was negligibly 34S enriched. The chemical mechanisms controlling the polysulfides incorporation into OM depend mostly on the functional groups and determine the 34S enrichment of the sulfurized OM. The results presented in this study can explain part of the difference between pyrite δ34S and sulfurized OM δ34S in natural marine sediments.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号