首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Gulf Stream pathway and the impacts of the eddy-driven abyssal circulation and the Deep Western Boundary Current
Institution:1. School of Coastal and Marine Systems Science, Coastal Carolina University, Conway, SC 29526, United States;2. Pacific Coastal and Marine Science Center, U.S. Geological Survey, Santa Cruz, CA 95060, United States;3. Woods Hole Coastal and Marine Science Center, U.S. Geological Survey, Woods Hole, MA 02543, United States;1. Programa de Pós-graduação em Geofísica, Instituto de Geociências, Universidade Federal da Bahia, Campus de Ondina, Travessa Barão de Jeremoabo, s/n, Salvador, BA, 40170-280, Brazil;2. Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia, Campus de Ondina, Travessa Barão de Jeremoabo, s/n, Salvador, BA 40170-280, Brazil;3. Departamento de Oceanografia, Instituto de Geociências, Universidade Federal da Bahia, Campus de Ondina, Travessa Barão de Jeremoabo, s/n, Salvador, BA 40170-280, Brazil
Abstract:A hydrodynamic model of the subtropical Atlantic basin and the Intra-Americas Sea (9–47°N) is used to investigate the dynamics of Gulf Stream separation from the western boundary at Cape Hatteras and its mean pathway to the Grand Banks. The model has five isopycnal Lagrangian layers in the vertical and allows realistic boundary geometry, bathymetry, wind forcing, and a meridional overturning circulation (MOC), the latter specified via ports in the northern and southern boundaries. The northward upper ocean branch of the MOC (14 Sv) was always included but the southward Deep Western Boundary Current (DWBC) was excluded in some simulations, allowing investigation of the impacts of the DWBC and the eddy-driven mean abyssal circulation on Gulf Stream separation from the western boundary. The result is resolution dependent with the DWBC playing a crucial role in Gulf Stream separation at 1/16° resolution but with the eddy-driven abyssal circulation alone sufficient to obtain accurate separation at 1/32° resolution and a realistic pathway from Cape Hatteras to the Grand Banks with minimal DWBC impact except southeast of the Grand Banks. The separation from the western boundary is particularly sensitive to the strength of the eddy-driven abyssal circulation. Farther to the east, between 68°W and the Grand Banks, all of the 1/16° and 1/32° simulations with realistic topography (with or without a DWBC) gave similar generally realistic mean pathways with clear impacts of the topographically constrained eddy-driven abyssal circulation versus very unrealistic Gulf Stream pathways between Cape Hatteras and the Grand Banks from otherwise identical simulations run with a flat bottom, in reduced-gravity mode, or with 1/8° resolution and realistic topography. The model is realistic enough to allow detailed model-data comparisons and a detailed investigation of Gulf Stream dynamics. The corresponding linear solution with a Sverdrup interior and Munk viscous western boundary layers, including one from the northward branch of the MOC, yielded two unrealistic Gulf Stream pathways, a broad eastward pathway centered at the latitude of Cape Hatteras and a second wind plus MOC-driven pathway hugging the western boundary to the north. Thus, a high resolution model capable of simulating an inertial jet is required to obtain a single nonlinear Gulf Stream pathway as it separates from the coast. None of the simulations were sufficiently inertial to overcome the linear solution need for a boundary current north of Cape Hatteras without assistance from pathway advection by the abyssal circulation, even though the core speeds of the simulated currents were consistent with observations near separation. In the 1/16° simulation with no DWBC and a 1/32° simulation with high bottom friction and no DWBC the model Gulf Stream overshot the observed separation latitude. With abyssal current assistance the simulated (and the observed) mean Gulf Stream pathway between separation from the western boundary and ~70°W agreed closely with a constant absolute vorticity (CAV) trajectory influenced by the angle of the coastline prior to separation. The key abyssal current crosses under the Gulf Stream at 68.5–69°W and advects the Gulf Stream pathway southward to the terminus of an escarpment in the continental slope. There the abyssal current crosses to deeper depths to conserve potential vorticity while passing under the downward-sloping thermocline of the stream and then immediately retroflects eastward onto the abyssal plain, preventing further southward pathway advection. Thus specific topographic features and feedback from the impact of the Gulf Stream on the abyssal current pathway determined the latitude of the stream at 68.5–69°W, a latitude verified by observations. The associated abyssal current was also verified by observations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号