首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Latitudinal and longitudinal variation of a planetary atmosphere and the occultation experiment
Authors:J Pirraglia and S H Gross
Institution:

Polytechnic Institute of Brooklyn, Graduate Center, Route 110-, Farmingdale, N.Y. 11735, U.S.A.

Abstract:The distribution of neutral and ionized particles about a planet depends, at any time, on angular coordinates (latitude and longitude) as well as altitude. Measurements of the Venusian and Martian atmospheres and ionospheres have been made by means of the ‘occultation’ experiment on-board the Mariner spacecrafts, and the same or similar experiment is planned for future missions to the planets. The conventional method of reducing the residual doppler data assumes spherical symmetry, in which the refractivity of the medium depends only on radius from the center of the planet, or altitude. It is shown that the neglect of angular dependence may introduce serious errors, even for media in which this dependence is slight compared to that in the radial direction, when the plane of motion of the spacecraft about the planet is inclined with respect to the direction of the Earth. The magnitude of the errors may be greatest for a planet such as Mercury and least for Jupiter, if planetary size and atmospheric temperature are the principal factors considered. Mars and Venus being intermediate. These results are most significant for an orbiter in which the orbital plane is inclined to obtain planetary coverage in a matter of months of measurements. Results of calculations for a particular model show that scale height measurements, and, thereby, atmospheric temperature, may be in error by a factor greater than 2 for inclined orbital configurations.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号