首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping
Authors:Bakhtiar Feizizadeh  Thomas Blaschke
Institution:1. Department of Geoinformatics – Z_GIS, University of Salzburg, Salzburg, Austria;2. Center for Remote Sensing and GIS, University of Tabriz, Tabriz, IranBakhtiar.Feizizadeh@stud.sbg.ac.at Feizizadeh@tabrizu.ac.ir
Abstract:GIS-based multicriteria decision analysis (MCDA) methods are increasingly being used in landslide susceptibility mapping. However, the uncertainties that are associated with MCDA techniques may significantly impact the results. This may sometimes lead to inaccurate outcomes and undesirable consequences. This article introduces a new GIS-based MCDA approach. We illustrate the consequences of applying different MCDA methods within a decision-making process through uncertainty analysis. Three GIS-MCDA methods in conjunction with Monte Carlo simulation (MCS) and Dempster–Shafer theory are analyzed for landslide susceptibility mapping (LSM) in the Urmia lake basin in Iran, which is highly susceptible to landslide hazards. The methodology comprises three stages. First, the LSM criteria are ranked and a sensitivity analysis is implemented to simulate error propagation based on the MCS. The resulting weights are expressed through probability density functions. Accordingly, within the second stage, three MCDA methods, namely analytical hierarchy process (AHP), weighted linear combination (WLC) and ordered weighted average (OWA), are used to produce the landslide susceptibility maps. In the third stage, accuracy assessments are carried out and the uncertainties of the different results are measured. We compare the accuracies of the three MCDA methods based on (1) the Dempster–Shafer theory and (2) a validation of the results using an inventory of known landslides and their respective coverage based on object-based image analysis of IRS-ID satellite images. The results of this study reveal that through the integration of GIS and MCDA models, it is possible to identify strategies for choosing an appropriate method for LSM. Furthermore, our findings indicate that the integration of MCDA and MCS can significantly improve the accuracy of the results. In LSM, the AHP method performed best, while the OWA reveals better performance in the reliability assessment. The WLC operation yielded poor results.
Keywords:landslide susceptibility mapping  GIS-MCDA  Monte Carlo simulation  sensitivity analysis  Dempster–Shafer Theory  Urmia lake basin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号