首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessing the seasonal influence of sewage and agricultural nutrient inputs in a subtropical river estuary
Authors:Simon D Costanzo  Mark J O’Donohue  William C Dennison
Institution:1. Marine Botany, Department of Botany, University of Queensland, 4067, Brisbane, QLD, Australia
3. South East Queensland Water Corporation Limited, Level 3, 240 Margaret Street, 4002, Brisbane, QLD, Australia
4. Center for Environmental Science, University of Maryland, Box 775, 21613, Cambridge, Maryland
Abstract:A combination of physical and chemical measurements and biological indicators identified nutrient impacts throughout an Australian subtropical river estuary. This was a balance of sewage inputs in the lower river and agricultural inputs in the mid-upper river, the combined influence being greater in the wet season due to greater agricultural surface runoff. Field sampling in the region was conducted at 6 sites within the river, over 5 surveys to encapsulate both wet and dry seasonal effects. Parameters assessed were tissue nitrogen (N) contents and σ15N signatures of mangroves and macroalgae, phytoplankton nutrient addition bioassays, and standard physical and chemical variables. Strong spatial (within river) and temporal (seasonal) variability was observed in all parameters. Poorest water quality was detected in the middle (agricultural) region of the river in the wet season attributable to large diffuse inputs in this region. Water quality towards the river mouth remained constant irrespective of season due to strong oceanic flushing. Mangrove and macroalgal tissue σ15N and %N proved a successful combination for discerning sewage and agricultural inputs. Elevated σ15N and %N represented sewage inputs, whereas low σ15N and elevated %N was indicative of agricultural inputs. Phytoplankton bioassays found the system to be primarily responsive to nutrient additions in the warmer wet season, with negligible responses observed in the cooler dry season. These results indicate that the Tweed River is sensitive to the different anthropogenic activities in its catchment and that each activity has a unique influence on receiving water quality.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号